
A Brief Overview of Me Relearning Mechanics
Willson Luo ·
Taken from my reading of Introduction to Mechanics by Daniel Kleppner and Robert J.
Kolenkow as well as the teachings of my professor, Dr. Wesley Campbell. It will also
be supplemented by things I learned from Introduction To Classical Mechancis by David
Morin which I believe is much clearer in its explanations.

Preface

These notes are a compilation of new things I learned in my freshman honors mechanics
course. Therefore, this will not cover knowledge that should already be cemented through
high school physics (AP Physics 1, 2, C). For example, I will not be including the equation
of momentum and its conservation since I take it as common knowledge.

For the sake of brevity and since I just haven’t gotten to it, there won’t be any examples
in the main body of this text, but I am looking to add more at the end of the notes at a
later date. Also, I really want to add more figures and diagrams and will try to get around
to it.
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1 Newton’s Laws

1.1 The First Law

The first law states that in inertial reference frames we will observe objects to remain in
their current state of motion unless acted upon by an acceleration. Now keep in mind it
is very important to establish that we are in a inertial reference frame. Without knowing
this fact, an object at rest could easily seem like it is undergoing acceleration.

1.2 The Second Law

The second law is most commonly just known as F = ma. However, we should first think
about what is mass and what is force. Kleppner proposes us to conduct an experiment
where we have an object moving along a frictionless track that is propelled by a stretched
rubber band. When we pull that rubber band and allow it to hit the object it will accelerate
with a certain magnitude. Mass is the ratio of the acceleration when we pull back the
rubber band the same amount and place different objects. We then use the definitions
of mass and accelerations with their units to create how we define force, leading us to
F = ma. It is also purely a coincidence that this empirical defintion of mass is the same
as the gravitational proportionality that is defined as mass.

1.3 The Third Law

The third law is very important since without it many of the conservation laws that govern
our world would not exist. It also allows us to know if an object is accelerating because
of a force or simply because we are in an non-inertial reference frame. And maybe most
importantly it tells us that all forces come from a source.

1.4 Applying The Laws

1. Try to treat everything as a point mass

2. Identify a coordinate system. This may just be tilting the normal cartesian coordi-
nate system.

3. Write an equation describing the net force

4. Write a constraint equation if the body is constrained to move along a certain path
(e.g. circle)

5. Solve

6. Do a sanity check. Plug in numbers and extremes. Do they make sense?
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2 Forces and Equations of Motion

2.1 The Fundamental Forces

1. Gravitational Force

2. Electromagnetic Force

3. Strong Force

4. Weak Force

The two most familiar fundamental forces will be the gravitational and electromagnetic
force. Both of these are able to act over a long distance where the strength of both
is inversely proportional to the square of the distances between two particles. The key
difference between these two is that gravitational force can only attract while the electro-
magnetic force can attract and repel. The other two forces are less obvious, but still very
important. The strong force (λQCD = 10−15 m) keeps protons and neutrons together,
while the weak force plays a role in processes that I am still not familiar with. However,
these two forces only act across very short distances so in almost all cases they can be
ignored.

*Because the rest of solving with forces is just using Newton’s laws I won’t be adding
more here.

3 Momentum

Newton’s law is commonly known as the form F = ma but the more accurate represenation

of the second law would be F = dP⃗
dt .

3.1 Momentum Flow and Force

Imagine a stream of water falling onto your hand, it exerts a force that is just as real as
if a steal rod was pushing on your hand. How can we represent this continuous stream of
droplets and give an equation for the force. We can start by imagining a single droplet.
We don’t know the instantaneous force of each droplet but we can calculate the impulse.

Idroplet =

∫ F dt

1 collision

= ∆p

= m(vf − v)

= −mv

Then by Newton’s 3rd Law the force felt by your hand will be

Ihand = mv
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Now what if there are many collisions per second. You will feel the average force Fav

rather than the quick shock of individual drops. Then setting the average time between
collisions to be T , the area under a graph of Fav over time T is identitcal to the impulse
due to one droplet.

FavT =

∫ F dt

1 collision

= mv

Then using the average distance between droplets which we can define as l = vT the
average force can then be written as

Fav =
mv

T
=

mv2

l

This momentum transfer by a stream causes the underlying forces behind lift. Here we
have demonstrated how this can be applied to a stream of water but the same principles
can be used to model and stream of any type of particles.

3.2 Momentum Flux

Earlier we found the average force exerted by a stream of particles. What if we now wanted
to do this, but consider the stream of particles to have an area. We define the momentum
flux as the amount of momentum flowing through a certain area per unit time. To derive
this we first start with the density ρm (kg/m3). The mass per unit length is then ρmA
and the momentum per unit length is ρmAv. The rate at which momentum flows through
a certain area (momentum per unit time), the flux, is then

Ṗ = ρmv2Av̂.

The force that then hits a surface is the change in momentum and is thus also Ṗ . We
can also consider if the force is not directed perpindicularly to the surface and is tilted at
angle θ. The force is then

Ṗ = ρmv2A cos θ.

At this point, it’s useful for us to define a quantity that will be known as flux density

J = ρmv2v̂.

The momentum flux can then be defined as the dot product of the flux density and area

Ṗ = (J ·A)v̂.

We can also look at surfaces where a stream of particles is not perfectly stopped. The
force can then be defined as

Ftot = Ṗin − Ṗout

which is very similar to electric flux through a closed surface.
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4 Energy

4.1 Intro

The point of mechanics is often to find how an object moves. When looking at Newton’s
laws at first glance they may seem sufficient to do just this. With a known force we can
find acceleration and integrate to find velocity and position. However, the problem arises
when we consider forces that are no longer a function of time. The view of energy serves
very useful for solving for equations in the form of

dv(t)

dt
= F(r).

Of course we could take a mathematical approach and solve this using various numerical
methods, but this wouldn’t give us much of a tangible understanding of the physical world.
Thus we introduce the concepts of energy and work.

4.2 Derivation

We start with solving the equation for one dimensional motion

m
d2x

dt2
= F (x)

m

∫ xb

xa

dv

dt
dx =

∫ xa

xb

F (x)dx

Examining the left side and substituting dx = vdt

m

∫ xb

xa

dv

dt
dx = m

∫ tb

ta

dv

dt
vdt

= m

∫ tb

ta

1

2

d

dt
(v2)dt

=
1

2
mv2

∣∣∣tb
ta

=
1

2
mv2b −

1

2
mv2a

Thus the change in kinetic energy in 1D motion equals the force applied over a distance

1

2
mv2b −

1

2
mv2a =

∫ xb

xa

F (x)dx

4.3 Conservation

I think this section doens’t need much elaboration. Energy is conserved within a closed
system.
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5 Topics in Dynamics

5.1 Intro

This section will describe some more specific topics regarding Newton’s laws that have not
been covered in the other sections.

5.2 Oscillations and Normal Modes

Any system can exhibit simple harmonic motion if perterbed from from its equilibrium a
small amount. Everything can be described with 3 types of equilibriums

1. Stable Equilibirum: dU
dr < 0.

Imagine an energy graph like that of well where a particle wants to sit in the well
of low energy

2. Unstable Equilibrium: dU
dr > 0

This is the case where that well becomes upside down.

3. Neutral Equilibirum: dU
dr = 0

When we look at objects in this stable equilibrium state, which is when they will exhibit
SHM, we can approximate any energy well to be that of a parabola. This approximation
gives us the very important relationship

d2U

dr2
= k = mω2

o

5.3 Collisions

6 Angular Momentum and Rotation

6.1 Intro

Fext =
dP

dt

For a point particle we define angular momentum about a point r⃗o to be

L⃗ = (r⃗ − r⃗o)× p⃗.

In the case that r⃗o = 0
L = r⃗ × p⃗.

The cross product can also take the form of

|r⃗ × p⃗| = |r⃗||p⃗| sinϕ

when r⃗ and p⃗ are placed on the same plane. Conveniently, we can also write it in the form
of

|r⃗ × p⃗| = r⊥p = rp⊥.
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If we expand the momentum term we see

L⃗ = r⃗ ×mv⃗

and
|v⃗| = ωρ.

Where ρ is defined as the shortest distance from the particle to the axis of rotation.
In the case where the rotation axis is just the z-axis, which we commonly define it be,
ρ =

√
x2 + y2.

6.2 Moment of Inertia

The general definition for angular momentum can be stated as

L = (
∑
i

miρ
2
i )ω

= Iω

We can redefine this over a continous distance and mass

I =
∑
i

miρ
2
i

=

∫
dV ρ2w

=

∫
dMρ2

Where w is the density. The moment of inertia can in other words be called a weighted
sum.

6.3 Parallel Axis Theorem

For any rigid object, the moment of inertia with an axis parallel to that of the axis at
the center of mass can be evaluated using the parallel axis theorem. Formally, if Io is the
moment of inertia of an object about the axis that contains its center of mass then the
monent of inertia ahout any parallel axis displaced by a distance L is given by

I = Io +ML2

Derivation
First we will define the quantity |ρ⃗com| = l. Then consider a plane containing mj and ⊥
to the rotation axis. We then define a vector

ρ⃗j
′ = ρ⃗j − ρ⃗com

Then just moving the terms around

ρ⃗j = ρ⃗j
′ + ρ⃗com
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Now we can plug this quantity into the equation for the moment of inertia.

I =
∑
j

mj(ρ⃗j)
2

=
∑
j

mj(ρ⃗j
′ + ρ⃗com)

=
∑
j

mj(ρ⃗j
′)2 + 2

∑
j

mj(ρ⃗j
′ · ρ⃗com) +

∑
j

mj(ρ⃗com)2

= Io + 2
∑
j

mj(ρ⃗j
′ · ρ⃗com) +ml2

= Io +ml2

The term 2
∑

j mj(ρ⃗j
′ · ρ⃗com) is 0 simply because it is the formula for the center of mass

of an object centered about the center of mass.

*This does not work in the general case and is only the special case for the theorem when
looking at the center of mass.

6.4 Torque and Dynamics

The torque for a particle is defined as

τ⃗ = r⃗ × F⃗ .

The net torque is also simply just

τ⃗net =
∑
i

τ⃗i.

It is important to note that just because the net force is 0 the net torque doesn’t necessarily
have to be and the vice versa is also true. Analagous to Newton’s second law torque is
also defined as

τ⃗ =
dL⃗

dt
.

Which then also means

τ⃗ =
dL⃗

dt

=
d

dt
Iω⃗

= I
dω⃗

dt
= Iα⃗.

Energy
To examine energy we first look at the scenario of a mass rotating about a fixed axis.

K =
∑
i

1

2
miv

2
i
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Then knowing that v = ωρ.

K =
∑
i

1

2
mi(ρiω)

2

=
∑
i

1

2
miρ

2
iω

2

=
1

2
Iω2

Chasles’ Theorem
The motion of any rigid body can be written as a combination of translation of its COM
and rotation about its COM, which we call spin. Now why would we care to call the
quantity spin? If we were to talk about the rotation of the earth how would we specify if
we were talking about the Earth rotating about its center of mass or its rotation around
the sun. That’s why we have defined the word spin to define the rotation about an objects
COM. Chasles’ Theorem then also tells us the total kinetic energy is the sum of the
rotational and translational kinetic energies.

K =
1

2
Mv2 +

1

2
Iω2

7 Harmonic Oscillators

7.1 Intro

8 Rigid Body Motion: It’s all in the dL
dt

8.1 Intro

When looking at rotational motion, we have an analagous for almost every quantity in
translation. However, we reach a problem when trying to represent the orientation of an
object. When looking at translations we are able to represent the position of objects with
a vector commonly denoted with r⃗. Now, thinking about the rotational motion, this isn’t
possible because the order that we rotate objects is important. Instead, the orientation
must be represented by something that is closer to an ordered list.

Despite this, all hope is not lost, because the velocity can indeed be modeled as a
vector something along the form of

ω⃗ = ωxî+ ωy ĵ + ωz k̂

Another very important thing to note when analyzing rigid body motion in the general
case is that the angular momentum L⃗ is not necessarily parallel to ω⃗. Though, in the
special case that we have fixed axis rotation it is.
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8.2 Gyroscopes!

My Attempt at an Intuitive Explanation
Before we consider the typical mind blowing demonstration of a bicycle wheel not falling
over when its attached to a rope simply because it’s spinning we should first examine a
top. In my opinion, it is just as much of a surprise that a top does not tip over compared
to the bicycle wheel not tipping over.

Consider when the top is not spinning and is attempted to be placed at an upright
position (of course if it was perfectly upright it would not topple over but that isn’t
practically possible). The torque is always applied parallel to the plane created by the
top face of the top. Under the circumstance that the top is not spinning it is trivial to
see that top would tip over in the direction corresponding with the right hand rule. Now,
when the top is already spinning, it has some non zero angular momentum. The angular
momentum points perpindicular from the plane that is the top face of the top and the
torque is still parallel to it. In this situation the torque, instead of making it tip over, will

start to change the angular momentum in accordance to the equation τ = dL⃗
dt . I think

that all of this makes pretty good sense, however I still always wondered why would the
torque now change the direction of the angular momentum instead of still making it tip
over.

To answer this, think about the angular momentum vector when the top is not spin-
ning. Well of course its 0 and there is no vector. So now the torque will begin to create
a vector for the angular momentum that is in the same direction of the torque. I hope in
your mind you can imagine this angular momentum vector growing as torque is applied to
it over time. Then, think about the vector when the top is already rotating. The vector
already exists and the torque is still doing the exact same thing, however now, since it’s
applied perpindicular to the angular momentum vector it is just changing the direction of
that vector similar to how centripetal acceleration only changes the direction of tangential
velocity and not the magnitude.

After the case of the top becomes clear, think about the bike wheel. It is essentially
the exact same thing, but the top is now rotated 90 degrees. The torque changes the
direction of the angular momentum vector because it’s simply being applied perpindicular
to it.

The precession (the orbital rotation of the object), is then just a result of the object
maintaining an angular momentum that is perpendicular to the torque.

The Math

τ =
dL⃗

dt

A flywheel spins at speed ωs, and has a precession rate of Ω as shown in the figure below.
We also consider ωs >> Ω so all of the angular momentum comes from the spin.
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Placing the pivot point at where the normal force is exerted we see the torque is

τ = Mgl

Since we the rate of spin of the flywheel is much greater than the rate of precession we
can simply just consider the angular momentum of the flywheel

L⃗s = Iω(− sin(Ωt+ ϕ)̂i+ cos(Ωt+ ϕ)ĵ)

d

dt
L⃗s = ΩIω(− cos(Ωt+ ϕ)̂i− sin(Ωt+ ϕ)ĵ)

at ϕ = 0, t = 0

L⃗s ∥ ĵ

dL⃗s

dt

∣∣
0,0

= −ΩIωsî

τ
∣∣
0,0

= −Mgl̂i = −ΩIωsî

Ω =
Mgl

Iωs

Thus we have found the rate of precession and can clearly confirm the flywheel does precess
instead of falling down.

8.3 The Principal Axes

Objects commonly don’t just spin around an axes that it is perfectly symmetrical about.
However for any object we can find 3 principal axes that make our calculations much
simpler. If we want to think of it with the inertia tensor, using the principal axes will give
us a diaganolized matrix with 3 moments of inertia. They form an orthonormal basis and
give us the very important property

Iω̂k = Ikω̂k.

The angular momentum of any object can also be represented by the 3 principal axes
which we’ll define the basis vectors as êa, êb, êc.

ω⃗ = ωaêa + ωbêb + ωêc

L⃗ = Laêa + Lbêb + Lcêc
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KEspin =
1

2
ω⃗ · L⃗

Note that this is not the lab frame and is non inertial. We call this the body fixed frame.
This also tells us that just because there is no torque it doesn’t necessarily mean

the angular velocity isn’t changing. The angular momentum must be conserved since
dL
dt = 0, however to keep this true ω⃗ must be changing. This can be justified by doing the
calculations of an object at two different orientations with the principal axes. In addition,
this concludes that in the general case τ = Iα does not apply.

9 Non Inertial Reference Frames

9.1 Uniformly Accelerating Systems

Consider two people in different reference frames. Alice stands still, while Bob flies away
in a rocket with acceleration a⃗ as as measured by Alice. r′ is the non intertial frame.

r⃗′ = r⃗ − (s0 + v⃗t+
1

2
a⃗t2)

˙⃗r′ = ˙⃗r − (v⃗ + a⃗t)

¨⃗r′ = ¨⃗r − a⃗

Therefore the force is

F⃗ ′ = m(¨⃗r′ − a⃗)

= F⃗ −ma⃗

F⃗ ′ = F⃗ + Ffict.

With any object in an acceleration frame we can simply view it as having a ficticious force
acted upon it.

9.2 Rotating Systems

For any fixed length vector B⃗ that is rotating about an axis Ω̂ at constant rate Ω can be
described by

dB⃗

dt
= Ω⃗× B⃗

Conisder two coordinate systems î, ĵ, k̂ the normal cartesian axes we are familiar with and
î′, ĵ′, k̂′ that is rotated about Ω⃗. We will call the force in the intertial frame Fin and in
the rotating frame Frot. Then consider the vector C⃗ = Cxî + Cy ĵ + Cxk̂ that describes
the position in the inertial frame.

dC⃗

dt in
=

dCx

dt
î+

dCy

dt
ĵ +

dCz

dt
k̂
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Then the same vector but in terms of unit vecotrs in the rotating frame

C⃗ = C ′
xî

′ + C ′
y ĵ

′ + C ′
z k̂

′

dC⃗

dt in
=

dC ′
x

dt
î′ +

dC ′
y

dt
ĵ′ +

dC ′
z

dt
k̂′

+ C ′
x

dî′

dt
+ C ′

y

dĵ′

dt
+ C ′

z

dk̂′

dt

What someone in the rotating frame would measure

dC⃗

dt rot
= î′

dC⃗ ′
x

dt
+ ĵ

dC⃗ ′
y

dt
+ k̂

dC⃗ ′
z

dt
.

We can see this matches the first three terms of the derivative of the position vector in
the inertial frame.

For the next 3 terms

C ′
x

dî′

dt
+ C ′

y

dĵ′

dt
+ C ′

z

dk̂′

dt
= C ′

xΩ⃗× î′ + C ′
yΩ⃗× ĵ′ + C ′

zΩ⃗× k̂′

= Ω⃗× (C ′
xî

′ + C ′
y ĵ

′ + C ′
z k̂

′)

= Ω⃗× C⃗.

Now to describe the motion of something measured in the inertial frame in quantities of
what someone in a rotating frame would measure we can put it together

dC⃗

dt in
=

dC⃗

dt rot
+ Ω⃗× C⃗

Applying to this to the position vector and taking the derivative we will see the appearance
of 2 more pseudo forces the centrifugal and coriolis.

v⃗in = v⃗rot + Ω⃗× r⃗

a⃗in = a⃗rot + 2Ω⃗× v⃗rot + Ω⃗× (Ω⃗× r⃗)

a⃗rot = a⃗in − 2Ω⃗× v⃗rot − Ω⃗× (Ω⃗× r⃗)

Multiply the accelerations with mass we have our 2 pseudo forces

F⃗coriolis = −2mΩ⃗× r⃗rot

F⃗centrifugal = −mΩ⃗× (Ω⃗× r⃗).
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